
Introduction to
normalization

Lecture 14

By Marina Barsky

Relational Schema Design

• Goal of relational schema design is to avoid anomalies and
redundancy.

• Update anomaly : one occurrence of a fact is changed,
but not all occurrences.

• Deletion anomaly: valid fact is lost when a tuple is
deleted.

• Now we will tackle the problem of refining relational
schemas.

• The main method: decomposition of relations into smaller
relations

Normalization

• Database normalization is the process of organizing the
fields and tables of a relational database to minimize
redundancy and dependency

• Normalization involves dividing large tables into smaller
(and less redundant) tables and defining relationships
between them.

• The objective: isolate each fact so that additions, deletions,
and modifications of a field can be made in just one table
and then propagated through the rest of the database using
the defined relationships

The goals of normalization
defined by Codd:

1. To free the collection of relations from undesirable insertion,
update and deletion dependencies

2. To reduce the need for restructuring the collection of relations, as
new types of data are introduced, and thus increase the life span of
application programs

3. To make the relational model more informative to users

4. To make the collection of relations neutral to the query statistics,
where these statistics are liable to change as time goes by

— E.F. Codd,

"Further Normalization of the Data Base Relational Model"

Functional dependencies

• The primary key identifies an entity

• All non-key attributes are functionally dependent on the key

• It is a special type of a function - a database function:
knowing an argument (value of attribute(s) A), we can find
all the other attributes (not from a formula but by lookup)

• Notation: A B

• A uniquely identifies B

• B is functionally dependent on A

Example of functional
dependencies

• Functional dependencies reflect real-life facts and are
nothing else but constraints on data

Grades

Name Course Grade

Bob Databases In pr

Maria HCI A

John Python B

Tom HCI A

Maria Algorithms A

Bob HCI B

Maria Python A

Name, Course → Grade
Name → Grade
Grade → Course
Course → Grade

FD example

• Constraint: “no two courses can meet in the same room at
the same time”

{hour, room} → course

Example: database of student
records

Students

Name Courses

Bob Databases (in progr.), HCI (A)

John Python (B)

Tom HCI (A)

Maria Algorithms (A), Python(A), HCI(A)

Students (Name, Courses (with grades))

Constraints:
Name is unique
One student may take multiple courses

Usage:
Report one student’s courses and grades

The first thing– identify key

• The key of the relation is a set of one or more attributes that
identify each tuple (row)

• The value of a key is unique for each row

• Each relation has only one key

• Key is immutable: once the value of the key is assigned
to a tuple, it cannot be updated through the lifetime of
the database, but only deleted with the entire tuple

• All non-key attributes are functionally dependent on key

Database of student records: key?

Students

Name Courses

Bob Databases (in progr.), HCI (A)

John Python (B)

Tom HCI (A)

Maria Algorithms (A), Python(A), HCI(A)

Students (Name, Courses (with grades))

Student records: key defined

Students

ID Name Courses

1 Bob Databases (in progr.), HCI (A)

2 John Python (B)

3 Tom HCI (A)

4 Maria Algorithms (A), Python(A), HCI(A)

Updated constraints:
ID is unique
ID determines Name
ID determines courses

Students (ID, Name, Courses (with grades))

Student records: functional
dependencies

Students

ID Name Courses

1 Bob Databases (in progr.), HCI (A)

2 John Python (B)

3 Tom HCI (A)

4 Maria Algorithms (A), Python(A), HCI(A)

ID Name
ID Courses
ID, Name Courses

Students (ID, Name, Courses (with grades))

Student record database is
anomalous

Students

ID Name Courses

1 Bob Databases (in progr.), HCI (A)

2 John Python (B)

3 Tom HCI (A)

4 Maria Algorithms (A), Python(A), HCI(A)

• There is no redundancy
(good!)

• Insertion anomaly

• Deletion anomaly

• General-purpose queries
are inefficient

Students (ID, Name, Courses (with grades))

Normal forms –testing for
normalization
• The database is normalized when all its relations are

normalized

• There are rules to test each relation – normal forms:
• 1NF

• 2NF

• 3NF

• BCNF

• 4NF

• 5NF

• In most cases, the relation is normalized if it is in 3NF

First normal form 1NF

• The primary key is defined

• The domain of each attribute is represented as a single
column (no duplicative attributes with the same meaning)

• Every row-and-column intersection contains exactly one
value from the applicable domain (atomicity)

Students: in 1NF?

Students relation

ID Name Courses

1 Bob Databases (in progr.), HCI (A)

2 John Python (B)

3 Tom HCI (A)

4 Maria Algorithms (A), Python(A), HCI(A)

Students: in 1NF?

Students relation

ID Name Courses

1 Bob Databases (in progr.), HCI (A)

2 John Python (B)

3 Tom HCI (A)

4 Maria Algorithms (A), Python(A), HCI(A)

• The courses are not atomic:
each cell in this column
contains multiple values

Students: in 1NF?

Students relation

ID Name Course1 Grade1 Course2 Grade2 Course3 Grade3

1 Bob Databases In progr. HCI A

2 John Python B

3 Tom HCI A

4 Maria Algorithms A Phyton A HCI A

Students: in 1NF?

Students relation

ID Name Course1 Grade1 Course2 Grade2 Course3 Grade3

1 Bob Databases In progr. HCI A

2 John Python B

3 Tom HCI A

4 Maria Algorithms A Phyton A HCI A

• The attributes are duplicative (multiple columns for the same
domain)

• Still general queries are difficult

• Waste of space

• Limited number of courses per student

Students: in 1NF?

Students

ID Name Course Grade

1 Bob Databases In pr

2 Maria HCI A

3 John Python B

4 Tom HCI A

2 Maria Algorithms A

1 Bob HCI B

2 Maria Python A

Primary key?

Students (ID, Name, Course, Grade)

Students: in 1NF!

Students

ID Course Name Grade

1 Databases Bob In pr

2 HCI Maria A

3 Python John B

4 HCI Tom A

2 Algorithms Maria A

1 HCI Bob B

2 Python Maria A

Students (ID, Name, Course, Grade)

New data: Students extended

Students

ID Course Name Phone Major Prof Grade

1 Databases Bob 211-2112 CSCI Dr. Monk In pr

2 HCI Maria 344-3344 BIOL Dr. Pooh A

3 Python John 500-5005 MATH Dr. Patel B

4 HCI Tom 601-6778 PHYS Dr. Pooh A

2 Algorithms Maria 344-3344 BIOL Dr. Monk A

1 HCI Bob 211-2112 CSCI Dr. Pooh B

2 Python Maria 344-3344 BIOL Dr. Patel A

Students (ID, Course, Name, Phone, Major, Professor, Grade)

Students extended

Constraints:

• ID is unique

• Student can take
many courses

• Student majors in
one subject

• Student has only
one phone

• Course is taught by
one professor

Students

ID Course Name Phone Major Prof Grade

1 Databases Bob 211-2112 CSCI Dr. Monk In pr

2 HCI Maria 344-3344 BIOL Dr. Pooh A

3 Python John 500-5005 MATH Dr. Patel B

4 HCI Tom 601-6778 PHYS Dr. Pooh A

2 Algorithms Maria 344-3344 BIOL Dr. Monk A

1 HCI Bob 211-2112 CSCI Dr. Pooh B

2 Python Maria 344-3344 BIOL Dr. Patel A

Students (ID, Course, Name, Phone, Major, Professor, Grade)

Students extended

Constraints
(functional
dependencies)

• ID Name

• ID Phone

• ID Major

• Course Professor

• ID, Course Grade

Students

ID Course Name Phone Major Prof Grade

1 Databases Bob 211-2112 CSCI Dr. Monk In pr

2 HCI Maria 344-3344 BIOL Dr. Pooh A

3 Python John 500-5005 MATH Dr. Patel B

4 HCI Tom 601-6778 PHYS Dr. Pooh A

2 Algorithms Maria 344-3344 BIOL Dr. Monk A

1 HCI Bob 211-2112 CSCI Dr. Pooh B

2 Python Maria 344-3344 BIOL Dr. Patel A

Students (ID, Course, Name, Phone, Major, Professor, Grade)

Students extended: problems

• Redundancy

• Insertion anomaly

• Deletion anomaly

• Update anomaly

Students

ID Course Name Phone Major Prof Grade

1 Databases Bob 211-2112 CSCI Dr. Monk In pr

2 HCI Maria 344-3344 BIOL Dr. Pooh A

3 Python John 500-5005 MATH Dr. Patel B

4 HCI Tom 601-6778 PHYS Dr. Pooh A

2 Algorithms Maria 344-3344 BIOL Dr. Monk A

1 HCI Bob 211-2112 CSCI Dr. Pooh B

2 Python Maria 344-3344 BIOL Dr. Patel A

Students (ID, Course, Name, Phone, Major, Professor, Grade)

Functional dependency diagram

ID

COURSE

PHONE

MAJOR

PROF

GRADE
Composite key

NAME

Second normal form: 2NF

• The relation is in 1NF

• All non-key attributes are fully dependent on the key (no
attributes depend on a part of a key)

Extended Students: in 2NF?

ID

COURSE

PHONE

MAJOR

PROF

GRADE
Composite key

NAME

Partial dependencies

Extended Students: in 2NF?

ID

COURSE

PHONE

MAJOR

PROF

GRADE
Composite key

NAME

Partial dependencies

• Solution: decompose all
partial dependencies into
separate relations

Students in 2NF

Students

ID Name Phone Major

1 Bob 211-2112 CSCI

2 Maria 344-3344 BIOL

3 John 500-5005 MATH

4 Tom 601-6778 PHYS

Courses

Course Prof

Databases Dr. Monk

HCI Dr. Pooh

Python Dr. Patel

Algorithms Dr. Monk

Grades

ID Course Grade

1 Databases In pr

2 HCI A

3 Python B

4 HCI A

2 Algorithms A

1 HCI B

2 Python A

Students (ID, Name, Phone, Major)

Courses (Course, Prof)

Grades (ID, Course, Grade)

ID

COURSE

PHONE

MAJOR

PROF

GRADE
Composite key

NAME

Students relation: new
information

Students (ID, Name, Phone, Major, Department)
Students

ID Name Phone Major Department

1 Bob 211-2112 CSCI Computer Science

2 Maria 344-3344 BIOL Life Sciences

3 John 500-5005 MATH Mathematics and Statistics

4 Tom 601-6778 PHYS Physics

5 Andrew 222-2341 CSCI Computer Science

6 Ann 544-6778 STAT Mathematics and Statistics

New constraint:
Major Department

Students relation: new
information

• Redundancy

• Update
anomalies

Students

ID Name Phone Major Department

1 Bob 211-2112 CSCI Computer Science

2 Maria 344-3344 BIOL Life Sciences

3 John 500-5005 MATH Mathematics and Statistics

4 Tom 601-6778 PHYS Physics

5 Andrew 222-2341 CSCI Computer Science

6 Ann 544-6778 STAT Mathematics and Statistics

Major Department

Students (ID, Name, Phone, Major, Department)

Functional dependency diagram

ID

PHONE

MAJOR

DEPARTMENT

Key

NAME

Third normal form 3NF

• The relation is in 2NF

• All attributes are functionally dependent only on
the key: no dependency on another non-key
attribute

Functional dependency diagram

ID

PHONE

MAJOR

DEPARTMENT

Key

Transitive dependency

NAME

Students in 3NF

Students

ID Name Phone Major

1 Bob 211-2112 CSCI

2 Maria 344-3344 BIOL

3 John 500-5005 MATH

4 Tom 601-6778 PHYS

5 Andrew 222-2341 CSCI

6 Ann 544-6778 STAT

MajorsOffered

Major Department

CSCI Computer Science

BIOL Life Sciences

PHYS Physics

MATH Mathematics and Statistics

STAT Mathematics and Statistics

Students (ID, Name, Phone, Major)

MajorsOffered (Major, Department)

ID

PHONE

MAJOR

DEPARTMENT

Key

NAME

Boyce-Codd normal form - BCNF

• Relation is in 3NF

• All attributes depend on the key, full key and nothing but
the key

Professor workload: in BCNF?

Professors

Prof Department Head WorkLoad

Dr. Monk CSCI Prof. Ming 30%

Dr. Pooh MATH Prof. Doe 70%

Dr. Patel PHYS Prof. Bond 100%

Dr. Pooh CSCI Prof. Ming 30%

Dr. Monk BIOL Prof. Bond 30%

Dr. Monk MATH Prof. Doe 40%

Department Head
Prof, Department Workload

Functional dependency diagram

DEPARTMENT

HEAD

WORKLOAD

Two overlapping

composite

candidate keys

PROF

Functional dependency diagram

• BCNF violation: part of two
candidate keys depends on
another part

DEPARTMENT

HEAD

WORKLOAD

Two overlapping

composite

candidate keys

PROF

Professors in BCNF

Professors

Prof Department WorkLoad

Dr. Monk CSCI 30%

Dr. Pooh MATH 70%

Dr. Patel PHYS 100%

Dr. Pooh CSCI 30%

Dr. Monk BIOL 30%

Dr. Monk MATH 40%

Department

Department Head

CSCI Prof. Ming

MATH Prof. Doe

PHYS Prof. Bond

BIOL Prof. Bond

Professors (Prof, Department, Workload)

Department (Department, Head)

Apply

Orders

Order ID Customer Phone Item1 Qty1 Price1 Item2 Qty2 Price2

1 Bob 211-2112 Pen 2 5.49 Eraser 1 2.00

2 John 344-3344 Pen 5 5.49

3 Bob 211-2112 Pen 1 5.49

4 Maria 500-5005 Eraser 3 2.00

Relationship between normal
forms

UNF

1 NF

2 NF

3 NF

BCNF

Exercises 1NF, 2NF, 3NF

